It's really all very simple—once you understand it. Then, here's the inside story on noise for those of us who haven't been designing low noise amplifiers for ten years.

You hear all sorts of terms like signal-to-noise ratio, noise figure, noise factor, noise voltage, noise current, noise power, noise spectral density, noise per root Hertz, broadband noise, spot noise, shot noise, flicker noise, excess noise, I/F noise, fluctuation noise, thermal noise, white noise, pink noise, popcorn noise, bipolar spike noise, low noise, no noise, and loud noise. No wonder not everyone understands noise specifications.

In a case like noise, it is probably best to sort it all out from the beginning. So, in the beginning, there was noise; and then there was signal. The whole idea is to have the noise very small compared to the signal; or, conversely, we desire a high signal-to-noise ratio S/N. Now it happens that S/N is related to noise figure NF, noise factor F, noise power, noise voltage e_n, and noise current i_n. To simplify matters, it also happens that any noisy channel or amplifier can be completely specified for noise in terms of two noise generators e_n and i_n as shown in Figure 1.

All we really need to understand are NF, e_n, and i_n. So here is a rundown on these three.

NOISE VOLTAGE, e_n, or more properly, EQUIVALENT SHORT-CIRCUIT INPUT RMS NOISE VOLTAGE is simply that noise voltage which would appear to originate at the input of the noiseless amplifier if the input terminals were shorted. It is expressed in nanovolts per root Hertz at a specified frequency, or in microvolts in a given frequency band. It is determined or measured by shorting the input terminals, measuring the output rms noise, dividing by amplifier gain, and referencing to the input. Hence the term, equivalent noise voltage. An output bandpass filter of known characteristic is used in measurements, and the measured value is divided by the square root of the bandwidth if data is to be expressed per unit bandwidth or per root Hertz. The level of e_n is not constant over the frequency band; typically it increases at lower frequencies as shown in Figure 2. This increase is 1/f NOISE.

NOISE CURRENT, i_n, or more properly, EQUIVALENT OPEN-CIRCUIT RMS NOISE CURRENT is that noise which occurs apparently at the input of the noiseless amplifier due only to noise currents. It is expressed in picoamps per root Hertz at a specified frequency or in nanoamps in a given frequency band. It is measured by shunting a capacitor or resistor across the input terminals such that the noise current will give rise to an additional noise voltage which is e_n x R or Z_n. The output is measured, divided by amplifier gain, referenced to input, and that contribution known to be due to e_n and resistor noise is appropriately subtracted from the total measured noise. If a capacitor is used at the input, there is only e_n and i_n x Z_n. The i_n is measured with a bandpass filter and converted to

\[pA/\text{Hz} \]

if appropriate; typically it increases at lower frequencies for op amps and bipolar transistors, but increases at higher frequencies for field-effect transistors.

NOISE FIGURE, NF is the logarithm of the ratio of input signal-to-noise and output signal-to-noise.

\[NF = 10 \log \left(\frac{S/N_{\text{in}}}{S/N_{\text{out}}} \right) \] \hspace{1cm} (1)

where: S and N are power or (voltage)^2 levels.

This is measured by determining the S/N at the input with no amplifier present, and then dividing by the measured S/N at the output with signal source present.

The values of R_gen and any X_gen as well as frequency must be known to properly express NF in meaningful terms. This is because the amplifier i_n x Z_gen as well as R_gen itself produces input noise. The signal source in Figure 1 contains some noise. However e_sig is generally considered to be noise free and input noise is present as the THERMAL NOISE of the resistive component of the signal generator impedance R_gen. This thermal noise is WHITE in nature as it contains constant NOISE POWER DENSITY per unit bandwidth. It is easily seen from Equation 2 that the \[e_n \] has the units V^2/Hz and that \[(e_n)^2 \] has the units V^2/Hz.

\[e_n^2 = 4kT \frac{R}{B} \] \hspace{1cm} (2)
where:

- T is the temperature in °K
- R is resistor value in Ω
- B is bandwidth in Hz
- k is Boltzmann’s constant

RELATION BETWEEN e_n, i_n, N_F

Now we can examine the relationship between e_n and i_n at the amplifier input. When the signal source is connected, the e_n appears in series with the e_{sig} and e_R. The i_n flows through R_{gen} thus producing another noise voltage of value $i_n \times R_{gen}$. This noise voltage is clearly dependent upon the value of R_{gen}. All of these noise voltages add at the input in rms fashion; that is, as the square root of the sum of the squares. Thus, neglecting possible correlation between e_n and i_n, the total input noise is

$$e_{N}^2 = e_{n}^2 + e_{R}^2 + i_{n}^2 R_{gen}^2$$

(3)

Further examination of the NF equation shows the relationship of e_N, i_n, and NF:

$$NF = 10 \log \frac{S_{in} \times N_{out}}{S_{out} \times N_{in}}$$

$$NF = 10 \log \frac{S_{in}, \text{Gp} \, SN^2}{S_{in}, \text{Gp} \, e_{eq}^2}$$

where: $G_p =$ power gain

$$NF = 10 \log \left(\frac{e_{eq}^2 + e_{n}^2 + i_{n}^2 R_{gen}^2}{e_{eq}^2} \right)$$

(4)

Thus, for small R_{gen}, noise voltage dominates; and for large R_{gen}, noise current becomes important. A clear advantage accrues to FET input amplifiers, especially at high values of R_{gen}, as the FET has essentially zero i_n. Note, that for an NF value to have meaning, it must be accompanied by a value for R_{gen} as well as frequency.

CALCULATING TOTAL NOISE, e_N

We can generate a plot of e_N for various values of R_{gen} if noise voltage and current are known vs frequency. Such a graph is shown in Figure 3 drawn from Figure 2. To make this plot, the thermal noise e_R of the input resistance must be calculated from Equation 2 or taken from the graph of Figure 4. Remember that each term in Equation 3 must be squared prior to addition, so the data from Figure 4 and from Figure 2 is squared. A sample of this calculation follows:

Example 1: Determine total equivalent input noise per unit bandwidth for an amplifier operating at 1 kHz from a source resistance of 10 kΩ. Use the data from Figures 2, 4.

1. Read e_{n} from Figure 4 at 10 kΩ; the value is

 $12.7 \text{ nV}/\sqrt{\text{Hz}}$

2. Read e_{n} from Figure 2 at 1 kHz; the value is

 $9.5 \text{ nV}/\sqrt{\text{Hz}}$

3. Read i_n from Figure 2 at 1 kHz; the value is

 $0.68 \text{ pA}/\sqrt{\text{Hz}}$. Multiply by 10 kΩ to obtain $6.8 \text{ nV}/\sqrt{\text{Hz}}$.
4. Square each term individually, and enter into Equation 3.

\[
\bar{\sigma}_N = \sqrt{\sigma_R^2 + \sigma_n^2 + \frac{1}{4} R_{gen}^2}
\]

\[
\bar{\sigma}_N = \sqrt{9.5^2 + 12^2 + 6.8^2} = \sqrt{279}
\]

This is total rms noise at the input in one Hertz bandwidth at 1 kHz. If total noise in a given bandwidth is desired, one must integrate the noise over a bandwidth as specified. This is most easily done in a noise measurement setup, but may be approximated as follows:

1. If the frequency range of interest is in the flat band; i.e., between 1 kHz and 10 kHz in Figure 2, it is simply a matter of multiplying \(\bar{\sigma}_R\) by the square root of the bandwidth.

Then, in the 1 kHz–10 kHz band, total noise is

\[
\bar{\sigma}_N = 17.4 \text{mV}\sqrt{\text{Hz}}
\]

2. If the frequency band of interest is not in the flat band of Figure 2, one must break the band into sections, calculating average noise in each section, squaring, multiplying by section bandwidth, summing all sections, and finally taking square root of the sum as follows:

\[
\bar{\sigma}_N = \sqrt{\sigma_R^2 B + \sum \sigma_n^2 + \frac{1}{4} R_{gen}^2 \bar{B}_i}
\]

(5)

where: \(i\) is the total number of sub-blocks.

For most purposes a sub-block may be one or two octaves.

Example 2: Determine the rms noise level in the frequency band 50 Hz to 10 kHz for the amplifier of Figure 2 operating from \(R_{gen} = 2k\).

1. Read \(\bar{\sigma}_n\) from Figure 4 at 2k, square the value, and multiply by the entire bandwidth. Easiest way is to construct a table as shown on the next page.

2. Read the median value of \(\bar{\sigma}_n\) in a relatively small frequency band, say 50 Hz–100 Hz, from Figure 2, square it and enter into the table.

3. Read the median value of \(\bar{I}_n\) in the 50 Hz–100 Hz band from Figure 2, multiply by \(R_{gen} = 2k\), square the result and enter in the table.

4. Sum the squared results from steps 2 and 3, multiply the sum by \(\Delta f = 100–50 = 50\) Hz, and enter in the table.

5. Repeat steps 2–4 for band sections of 100 Hz–300 Hz, 300 Hz–1000 Hz and 1 kHz–10 kHz. Enter results in the table.

6. Sum all entries in the last column, and finally take the square root of this sum for the total rms noise in the 50 Hz–10,000 Hz band.

7. Total \(\bar{\sigma}_n\) is 1.62 \(\mu\)V in the 50 Hz–10,000 Hz band.

CALCULATING S/N and NF

Signal-to-noise ratio can be easily calculated from known signal levels once total rms noise in the band is determined. Example 3 shows this rather simple calculation from Equation 6 for the data of Example 2.

\[
S/N = 20 \log \frac{\sigma_{sig}}{\sigma_N}
\]

Example 3: Determine S/N for an rms \(e_{sig} = 4\) mV at the input to the amplifier operated in Example 2.

1. RMS signal is \(e_{sig} = 4\) mV

2. RMS noise from Example 2 is 1.62 \(\mu\)V

3. Calculate S/N from Equation 6

\[
S/N = 20 \log \frac{4 \text{ mV}}{1.62 \text{ \(\mu\)V}}
\]

\[
= 20 \log (2.47 \times 10^3)
\]

\[
= 20 (\log 10^3 + \log 2.47)
\]

\[
= 20 (3 + 0.393)
\]

\[S/N = 68 \text{ dB}\]

It is also possible to plot NF vs frequency at various \(R_{gen}\) for any given plot of \(\bar{\sigma}_n\) and \(\bar{I}_n\). However there is no specific all-purpose conversion plot relating NF, \(\bar{\sigma}_n\), \(\bar{I}_n\), \(R_{gen}\), and \(\Delta f\). If either \(\bar{\sigma}_n\) or \(\bar{I}_n\) is neglected, a reference chart can be constructed. Figure 5 is such a plot when only \(\bar{\sigma}_n\) is considered. It is useful for most op amps when \(R_{gen}\) is less than about 200\(\Omega\) and for FETs at any \(R_{gen}\) (because there is no significant \(\bar{I}_n\) for FETs), however actual NF for op amps with \(R_{gen} > 200\text{,}\) is higher than indicated on the chart. The graph of Figure 5 can be used to find spot NF if \(\bar{\sigma}_n\) and \(R_{gen}\) are known, or to find \(\bar{\sigma}_n\) if NF and \(R_{gen}\) are known. It can also be used to find max \(R_{gen}\) allowed for a given max NF when \(\bar{\sigma}_n\) is known.

In any case, values are only valid if \(\bar{I}_n\) is negligible and at the specific frequency of interest for NF and \(\bar{\sigma}_n\), and for 1 Hz bandwidth. If bandwidth increases, the plot is valid so long as \(\bar{\sigma}_n\) is multiplied by \(\sqrt{\Delta f}\).

FIGURE 5. Spot NF vs \(R_{gen}\) when Considering Only \(\bar{\sigma}_n\) and \(\bar{I}_n\) (not valid when \(\bar{I}_n R_{gen}\) is significant)

THE NOISE FIGURE MYTH

Noise figure is easy to calculate because the signal level need not be specified (note that \(e_{sig} \) drops out of Equation 4).

Because NF is so easy to handle in calculations, many designers tend to lose sight of the fact that signal-to-noise ratio (S/N) is what is important in the final analysis, be it an audio, video, or digital data system. One can, in fact, choose a high \(R_{gen}\) to reduce NF to near zero if \(\bar{I}_n\) is very small. In this case \(\bar{\sigma}_R\) is the major source of noise, overshadowing \(\bar{\sigma}_n\) completely. The result is very low NF, but very low S/N as well because of very high noise. Don’t be fooled into believing that low NF means low noise per se!
Another term is worth considering, that is optimum source resistance \(R_{\text{OPT}} \). This is a value of \(R_{\text{gen}} \) which produces the lowest NF in a given system. It is calculated as

\[
R_{\text{OPT}} = \frac{\overline{e}_n}{\overline{i}_n} \tag{7}
\]

This has been arrived at by differentiating Equation 4 with respect to \(R_{\text{gen}} \) and equating it to zero (see Appendix). Note that this does not mean lowest noise.

TABLE 1. Noise Calculations for Example 2

<table>
<thead>
<tr>
<th>(B) (Hz)</th>
<th>(\Delta f) (Hz)</th>
<th>(\overline{e}{n2}) (nV/Hz) (+ i{n2} R_{\text{gen}}^2)</th>
<th>(\text{SUM} \times \Delta f)</th>
<th>(=) (nV²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–100</td>
<td>50</td>
<td>(20)^² = 400</td>
<td>(8.7 x 2.0k)^²</td>
<td>= 302</td>
</tr>
<tr>
<td>100–300</td>
<td>200</td>
<td>(13)^² = 169</td>
<td>(8 x 2.0k)^²</td>
<td>= 256</td>
</tr>
<tr>
<td>300–1000</td>
<td>700</td>
<td>(10)^² = 100</td>
<td>(7 x 2.0k)^²</td>
<td>= 196</td>
</tr>
<tr>
<td>1.0k–10k</td>
<td>9000</td>
<td>(9)^² = 81</td>
<td>(6 x 2.0k)^²</td>
<td>= 144</td>
</tr>
<tr>
<td>50–10,000</td>
<td>9950</td>
<td>(\overline{e}_{n2} = (5.3)^2 = 28)</td>
<td>(\text{SUM} \times \Delta f = 1620) nV</td>
<td>1.62 µV</td>
</tr>
</tbody>
</table>

*The units are as follows: (20 nV/\(\sqrt{\text{Hz}} \))² = 400 nV²/Hz
(8.7 pA/\(\sqrt{\text{Hz}} \) x 2.0 kΩ)² = 302 nV²/Hz
\(\text{SUM} = 702 \) nV²/Hz x 50 Hz = 35,000 nV²

Then note in Figure 3, that \(\overline{e}_n^2 \) is in the neighborhood of 20 nV/\(\sqrt{\text{Hz}} \) for \(R_{\text{gen}} \) of 14k, while \(\overline{e}_n = 10 \) nV/\(\sqrt{\text{Hz}} \) for \(R_{\text{gen}} = 0–100\Omega \). STOP! Do not pass GO. Do not be fooled. Using \(R_{\text{gen}} = R_{\text{OPT}} \) does not guarantee lowest noise UNLESS \(\overline{e}_{n2}^2 < k R_{\text{gen}} \) as in the case of transformer coupling. When \(\overline{e}_{n2}^2 > k R_{\text{gen}} \) as is the case where signal level is proportional to \(R_{\text{gen}} \), \(\overline{e}_{n2}^2 = k R_{\text{gen}}^2 \). It makes sense to use the highest practical value of \(R_{\text{gen}} \). When \(\overline{e}_{n2}^2 < k R_{\text{gen}} \), it makes sense to use a value of \(R_{\text{gen}} < R_{\text{OPT}} \). These conclusions are verified in the Appendix.

This all means that it does not make sense to tamper with the \(R_{\text{gen}} \) of existing signal sources in an attempt to make \(R_{\text{gen}} = R_{\text{OPT}} \). Especially, do not add series resistance to a source for this purpose. It does make sense to adjust \(R_{\text{gen}} \) in transformer coupled circuits by manipulating turns ratio or to design \(R_{\text{gen}} \) of a magnetic pick-up to operate with pre-amps where \(R_{\text{OPT}} \) is known. It does make sense to increase the design resistance of signal sources to match or exceed \(R_{\text{OPT}} \) so long as the signal voltage increases with \(R_{\text{gen}} \) in at least the ratio \(\overline{e}_{n2}^2 < 5^2 \) \(R_{\text{gen}} \). It does not necessarily make sense to select an amplifier with \(R_{\text{gen}} = R_{\text{OPT}} \) to gain lower S/N than another (quieter) amplifier operating with \(R_{\text{gen}} = R_{\text{OPT}} \).

With some amplifiers it is possible to adjust \(R_{\text{OPT}} \) over a limited range by adjusting the first stage operating current (the National LM121 and LM381 for example). With these, one might increase operating current, varying \(R_{\text{OPT}} \), to find a condition of minimum S/N. Increasing input stage current decreases \(R_{\text{OPT}} \) as \(\overline{e}_n \) is decreased and \(i_n \) is simultaneously increased.

Let us consider one additional case of a fairly complex nature just as a practical example which will point up some factors often overlooked.

Example 4: Determine the S/N apparent to the ear of the amplifier of Figure 2 operating over 50-12,800 Hz when driven by a phonograph cartridge exhibiting \(R_{\text{gen}} = 1350 \Omega \), \(L_{\text{gen}} = 0.5H \), and average \(e_{\text{sig}} = 4.0 \text{ mVrms} \). The cartridge is to be loaded by 47k as in Figure 7. This is equivalent to using a Shure V15, Type 3 for average level recorded music.

1. Choose sectional bandwidths of 1 octave each, listed in the following table.
2. Read \(\overline{e}_n \) from Figure 2 as average for each octave and enter in the table.
3. Read \(i_n \) from Figure 2 as average for each octave and enter in the table.
4. Read \(\overline{e}_{R1} \) for the \(R_{\text{gen}} = 1350 \Omega \) from Figure 4 and enter in the table.
5. Determine the values of \(Z_{\text{gen}} \) at the midpoint of each octave and enter in the table.
6. Determine the amount of \(\overline{e}_{R1} \) which reaches the amplifier input; this is

\[
\frac{\overline{e}_{R1} R_{1} + Z_{\text{gen}}}{R_{1} + Z_{\text{gen}}}
\]

7. Read the noise contribution \(\overline{e}_{\text{sig}} \) of \(R_{1} = 47k \) from Figure 4.
8. Determine the amount of \(\overline{e}_{\text{sig}} \) which reaches the amplifier input; this is

\[
\frac{\overline{e}_{\text{sig}} Z_{\text{gen}}}{R_{1} + Z_{\text{gen}}}
\]
9. Determine the effective noise contributed by \(i_n \) flowing through the parallel combination of \(R_1 \) and \(Z_{\text{gen}} \). This is
\[
\frac{Z_{\text{gen}} R_1}{Z_{\text{gen}} + R_1}
\]
10. Square all noise voltage values resulting from steps 2, 6, 8 and 9; and sum the squares.
11. Determine the relative gain at the midpoint of each octave from the RIAA playback response curve of Figure 6.
12. Determine the relative gain at these same midpoints from the A weighted response curve of Figure 6 for sound level meters (this roughly accounts for variations in human hearing).
13. Assume a tone control high frequency boost of 10 dB at 10 kHz from Figure 6. Again determine relative response of octave midpoints.
14. Multiply all relative gain values of steps 11-13 and square the result.
15. Multiply the sum of the squared values from step 10 by the resultant relative gain of step 14 and by the bandwidth in each octave.
16. Sum all the values resultant from step 15, and find the square root of the sum. This is the total audible rms noise apparent in the band.
17. Divide \(e_{\text{sig}} = 4 \) mV by the total noise to find \(S/N = 69.4 \) dB.
STEPS FOR EXAMPLE

1. **Frequency Band (Hz)**
 - 50–100
 - 100–200
 - 200–400
 - 400–800
 - 800–1600
 - 1.6–3.2k
 - 3.2–6.4k
 - 6.4–12.8k

2. **Bandwidth, B (Hz)**
 - 50
 - 100
 - 200
 - 400
 - 800
 - 1600
 - 3200
 - 6400

3. **Bandcenter, f (Hz)**
 - 75
 - 150
 - 300
 - 600
 - 1200
 - 2400
 - 4800
 - 9600

4. **Z gen a tf (Ω)**
 - 1355
 - 1425
 - 1665
 - 2400
 - 4220
 - 8100
 - 16k
 - 32k

5. **Z gen R1 (Ω)**
 - 1300
 - 1360
 - 1600
 - 2270
 - 3900
 - 6900
 - 11.9k
 - 19k

6. **Z gen (R1 + Z gen)**
 - 0.028
 - 0.030
 - 0.034
 - 0.485
 - 0.082
 - 0.145
 - 0.255
 - 0.400

7. **R1/(R1 + Z gen)**
 - 0.97
 - 0.97
 - 0.97
 - 0.95
 - 0.92
 - 0.86
 - 0.74
 - 0.60

8. **RIAA Gain, A RIAA**
 - 5.6
 - 3.1
 - 2.0
 - 1.4
 - 1.0
 - 0.7
 - 0.45
 - 0.316

9. **Corr for Hearing, A A**
 - 0.08
 - 0.18
 - 0.45
 - 0.80
 - 1.0
 - 1.26
 - 1.0
 - 0.5

10. **H-F Boost, A boost**
 - 1
 - 1
 - 1
 - 1
 - 1.12
 - 1.46
 - 2.3
 - 3.1

11. **Product of Gains, A**
 - 0.45
 - 0.55
 - 0.9
 - 0.80
 - 1.0
 - 1.26
 - 0.62
 - 0.49

12. **2 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74

13. **2 29 29 29 29 29 29 29 29

14. **2 0.85 0.80 0.77 0.72 0.65 0.62 0.60 0.60

15. **1.9 14 11 10 9.5 9 9 9 9

16. **10.2 30.4 162 504 1010 2640 3400 1550

17. **% 180 195 212 100 90 81 81 81

18. **% 360 4.35 4.35 4.35 4.25 4.15 3.86 3.33 2.7

19. **% 8.5 8.7 0.87 0.98 1.4 2.4 4.2 7.4 11.6

20. **% 1.1 1.09 1.23 1.63 2.55 4.3 7.1 11.4

21. **% 0.95 0.97 0.97 0.92 0.86 0.74 0.60

22. **% 0.028 0.030 0.034 0.485 0.082 0.145 0.255 0.400

23. **% 0.97 0.97 0.97 0.95 0.92 0.86 0.74 0.60

24. **% 0.45 0.55 0.9 1.12 1.12 1.28 1.03 0.49

25. **% 0.08 0.18 0.45 0.80 1.0 1.26 1.0 0.5

26. **% 1.21 1.09 1.23 1.63 2.55 4.3 7.1 11.4

27. **% 0.81 0.87 0.98 1.4 2.4 4.2 7.4 11.6

28. **% 1.1 1.09 1.23 1.63 2.55 4.3 7.1 11.4

29. **% 1.1 1.09 1.23 1.63 2.55 4.3 7.1 11.4

30. **% 0.81 0.87 0.98 1.4 2.4 4.2 7.4 11.6

31. **% 1.1 1.09 1.23 1.63 2.55 4.3 7.1 11.4

32. **% 1.1 1.09 1.23 1.63 2.55 4.3 7.1 11.4

Note the significant contributions of i_n and the 47k resistor, especially at high frequencies. Note also that there will be a difference between calculated noise and that noise measured on broadband meters because of the A curve employed in the example. If i_n were not for the A curve attenuation at low frequencies, the ε_i would add a very important contribution below 200 Hz. This would be due to the RIAA boost at low frequency. As it stands, 97% of the 1.35 µV would occur in the 800–12.8 kHz band alone, principally because of the high frequency boost and the A measurement curve. If the measurement were made without either the high frequency boost or the A curve, the ε_i would be 1.25 µV. In this case, 76% of the total noise would arise in the 50 Hz–400 Hz band alone. If the A curve were used, but the high-frequency boost were deleted, ε_i would be 0.91 µV; and 94% would arise in the 800–12,800 Hz band alone.

The three different methods of measuring would only produce a difference of +3.5 dB in overall S/N, however the prime sources of the largest part of the noise and the frequency character of the noise can vary greatly with the test or measurement conditions. It is, then, quite important to know the method of measurement in order to know which individual noise sources in Figure 7 must be reduced in order to significantly improve S/N.

CONCLUSIONS

The main points in selecting low noise preamplifiers are:

1. Don’t pad the signal source; live with the existing R_{gen}.
2. Select on the basis of low values of ε_i and especially i_n if R_{gen} is over about a thousand Ω.
3. Don’t select on the basis of NF or R_{OPT} in most cases. NF specs are all right so long as you know precisely how to use them and so long as they are valid over the frequency band for the R_{gen} or Z_{gen} with which you must work.
4. Be sure to (root) sum all the noise sources ε_i, i_n and ε_R in your system over appropriate bandwidth.
5. The higher frequencies are often the most important unless there is low frequency boost or high frequency attenuation in the system.
6. Don’t forget the filtering effect of the human ear in audio systems. Know the eventual frequency emphasis or filtering to be employed.

Derivation of R_{OPT}:

\[
NF = 10 \log \left(\frac{\sigma_{n2}^2 + \sigma_{v2}^2 + I_{R}^2 R_{\text{gen}}^2}{\sigma_{n2}^2} \right)
= 10 \log \left(1 + \frac{\sigma_{v2}^2 + I_{R}^2 R_{\text{gen}}^2}{\sigma_{n2}^2} \right)
\]

\[
\frac{\delta NF}{\delta R} = \frac{0.435 \cdot 4 \text{kTRB} \left(R_{\text{gen}} \right) - \left(\sigma_{n2}^2 + I_{R}^2 R^2 \right) \text{kTB}}{(4 \text{kTRB})^2} \frac{1 + \left(\sigma_{v2}^2 + I_{R}^2 R^2 \right) / 4 \text{kTRB}}{1 + \left(\sigma_{v2}^2 + I_{R}^2 R^2 \right) / 4 \text{kTRB}}
\]

where: $R = R_{\text{gen}}$

Set this = 0, and

\[
4 \text{kTRB} \left(2R_{\text{gen}} \right) = 4 \text{kTB} \left(\sigma_{n2}^2 + I_{R}^2 R^2 \right)
\]

\[
2 I_{R}^2 R^2 = \sigma_{n2}^2 + I_{R}^2 R^2
\]

\[
I_{R}^2 R^2 = \sigma_{n2}^2
\]

\[
R^2 = \frac{\sigma_{n2}}{I_{R}^2}
\]

$R_{\text{OPT}} = \sigma_{n2} / I_{n}$

APPENDIX II

Selecting R_{gen} for highest S/N.

\[
S/N = \frac{\sigma_{\text{sig}}^2}{B(\sigma_{n2}^2 + \sigma_{v2}^2 + I_{R}^2 R^2)}
\]

For S/N to increase with R,

\[
\frac{\delta S/N}{\delta R} > 0
\]

\[
\frac{\delta S/N}{\delta R} = 2 \sigma_{\text{sig}} \left(\delta \sigma_{\text{sig}} / \delta R \right) \left(\sigma_{n2}^2 + \sigma_{v2}^2 + I_{R}^2 R^2 \right) - \sigma_{\text{sig}}^2 \left(4 kT + 2 I_{R}^2 R \right) B \left(\sigma_{n2}^2 + \sigma_{v2}^2 + I_{R}^2 R^2 \right)
\]

If we set > 0, then

\[
2 \left(\delta \sigma_{\text{sig}} / \delta R \right) \left(\sigma_{n2}^2 + \sigma_{v2}^2 + I_{R}^2 R^2 \right) > \sigma_{\text{sig}} \left(4 kT + 2 I_{R}^2 R \right)
\]

For $\sigma_{\text{sig}} = k_{1} \sigma_{n}, \sigma_{\text{sig}} / \delta R = k_{1} / 2 R$

\[
(2 k_{1} / 2 R) \left(\sigma_{n2}^2 + \sigma_{v2}^2 + I_{R}^2 R^2 \right) > k_{1} \sigma_{n} \left(4 kT + 2 I_{R}^2 R \right)
\]

\[
\sigma_{n2}^2 + \sigma_{v2}^2 + I_{R}^2 R^2 > 4 kT + 2 I_{R}^2 R^2
\]

\[
\sigma_{n2}^2 > I_{R}^2 R^2
\]

$R < \sigma_{n} / I_{n}$
Therefore S/N increases with R_{gen} so long as $R_{gen} \leq R_{OPT}$.

For $e_{sig} = k_1 R$, $\delta e_{sig}/\delta R = k_1$.

\[
2 k_1 (\delta R^2 + \delta e_{n}^2 + \delta i_{n}^2 R^2) > k_1 R (4 k T + 2 \delta i_{n}^2 R)
\]

\[
2 \delta e_{n}^2 + 2 \delta i_{n}^2 R^2 > 4 k T R + 2 \delta i_{n}^2 R^2
\]

Then S/N increases with R_{gen} for any amplifier.

For any $e_{sig} \leq k_1 R$, an optimum R_{gen} may be determined. Take, for example, $e_{sig} = k_1 R^{0.4}$.

\[
\frac{\delta e_{sig}}{\delta R} = 0.4k_1 R^{0.6} (0.8 k_1 / R^{0.6}) (\delta R^2 + \delta e_{n}^2 + \delta i_{n}^2 R^2) > k_1 R^{0.4} (4 k T + 2 \delta i_{n}^2 R)
\]

\[
0.8 \delta e_{n}^2 + 0.8 \delta i_{n}^2 R^2 > 4 k T R + 2 \delta i_{n}^2 R^2
\]

\[
0.8 \delta e_{n}^2 > 0.2 \delta i_{n}^2 + 1.2 \delta i_{n}^2 R^2
\]

Then S/N increases with R_{gen} until

\[
0.25 \delta e_{n}^2 + 1.5 \delta i_{n}^2 R^2 = \delta e_{n}^2
\]

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.